报告时间:2019年5月29日(星期三)10:30
报告地点:翡翠科教楼B座1710
工作单位:汤姆森河大学
报告人简介:
史晓平,2002年毕业于重庆大学应用数学本科专业,而后加入威尼斯官网担任助教职务,2008年获得中国科学技术大学概率统计硕士学位, 随后赴加拿大约克大学攻读统计博士学位并于2011年获得博士学位,博士毕业后在加拿大多伦多大学从事博士后研究,随后分别在约克大学和圣弗朗西斯•格扎维埃大学任教,2016年加入汤姆森河大学至今担任助理教授职务,主要从事分布的鞍点近似,复合似然推断,变量选择,基于图论方法的变点检测,以及图像的去噪等研究工作。研究成果主要发表在PNAS, Canadian Journal of Statistics, Statistica Sinica, Statistics and Computing, 中国科学,等。
报告简介:
The change-point detection has been carried out in terms of the Euclidean minimum spanning tree (MST) and shortest Hamiltonian path (SHP), with successful applications in the determination of authorship of a classic novel, the detection of change in a network over time, the detection of cell divisions, etc. However, these Euclidean graph-based tests may fail if a dataset contains random interferences. To solve this problem, we present a powerful non-Euclidean SHP-based test, which is consistent and distribution-free. The simulation shows that the test is more powerful than both Euclidean MST- and SHP-based tests and the non-Euclidean MST-based test. Its applicability in detecting both landing and departure times in video data of bees’ flower visits is illustrated.